

Ronaldo Paranhos

Esta é uma aplicação muito comum na indústria. Os motivos para esta grande utilização incluem, do lado dos aços carbono e C-Mn de grau estrutural, o seu menor custo em relação aos aços inoxidáveis austeníticos, aliado a uma maior resistência mecânica, principalmente em relação ao limite de escoamento e, do lado dos aços inoxidáveis, a sua resistência à corrosão muito superior e necessária em aplicações em que um meio agressivo esteja em contato com alguma parte do equipamento.

Assim, é uma prática comum projetar e fabricar equipamentos em aço carbono estrutural e revestir a sua superfície com um material mais nobre, principalmente em relação à resistência a corrosão. No Brasil, isto é feito para diversos componentes de hidroelétricas, incluindo diferentes partes que permanecem em contato com a água, como palhetas das turbinas, condutores e distribuidores de água. Um metal de solda tipo 18%Cr-8%Ni já é suficiente para garantir uma resistência à corrosão adequada. Uma única exceção ocorre quando a região estiver sujeita a problemas de cavitação, neste caso ligas específicas são preferencialmente utilizadas.

Devido à necessidade de se recobrir grandes superfícies, processos de soldagem automáticos, mecanizados ou semi-automáticos e com elevada taxa de deposição, como arco submerso (SAW) e arame tubular (FCAW), são preferidos. Para se garantir uma alta produtividade, um valor elevado de corrente deve ser usado, o que pode levar a uma diluição muito alta (de até 70%) e, assim, alterar significativamente a composição do metal de solda, induzindo a problemas de ordem metalúrgica.

Este estudo de caso tem por objetivo avaliar combinações de metal de solda que podem ser usadas e as suas conseqüências do ponto de vista metalúrgico, no revestimento por soldagem de aço carbono ou C-Mn estrutural com um aço inoxidável austenítico. Será utilizado o diagrama de Schaefler para ilustrar os problemas e soluções.

O problema a ser considerado será a deposição de uma camada de 6mm de espessura de aço inoxidável tipo 18%Cr-8%Ni, ou similar, sobre aço C-Mn com 100mm de espessura. Os metais de adição considerados serão ER308, ER309 e ER312 cuja composição química é mostrada na tabela XXIV juntamente com a do metal base. Será usado um processo de soldagem mecanizado com diluição típica de 50%.

Supondo que cada camada de solda acrescente 3mm à espessura, serão necessárias duas camadas. Note que o arame ER312 tem um maior custo que o ER309 e este tem maior custo que o ER308.

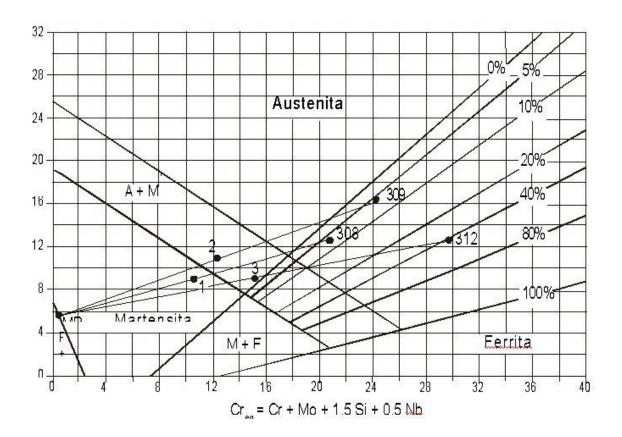
Tabela XXIV Composição típica dos metais de adição e do metal base e valores dos equivalentes de Cr e Ni conforme o diagrama de Schaefler.

Material %C Aco C-Mn 0.16	%Cr	%Ni	%Mn 1.1	%Si 0.2	%Si 0.2	Cr _{Ea} .	Ni _{Ea} . 5,5
ER308 0.06 ER309 0.08	20.0 23,5	10.0 13.0	1,5 1,5	0.5 0.5	0,5 0,5	20.7 24.2	12.5 16,1
ER312 0,09	29,0	9,0	1,5	0,5	0,5	29,7	12,5

Deposição da Primeira Camada de Solda:

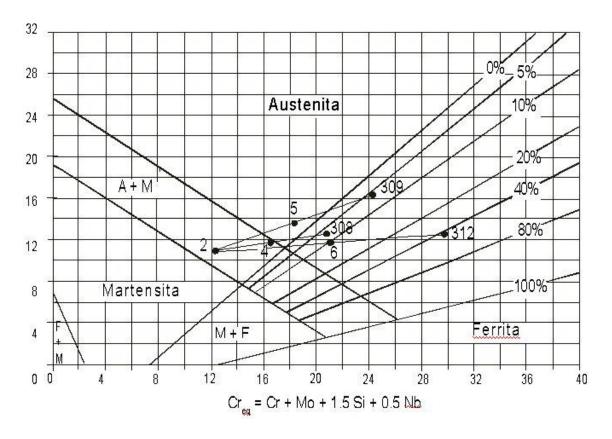
Os pares de coordenadas (Cr, Ni) da tabela XXI estão marcados no diagrama de Schaefler (figura 42) com linhas unindo o metal base a cada um dos metais de adição. Para a diluição de 50%, toma-se o ponto localizado na metade de cada linha para representar o metal de solda correspondente.

Observa-se que, com o uso de ER308 na primeira camada (ponto 1, figura 42), a solda cai na região martensítica apresentando uma elevada dureza que, aliada à grande restrição devido à espessura do metal base (100mm), torna-a sujeita à fissuração na presença de hidrogênio. Para evitar, a peça deve ser pré-aquecida acima de 200°C, mantida a esta temperatura durante a soldagem, e submetida a um pós-aquecimento, o que tende a ser inviável devido à espessura do metal base. Logo, o uso de ER308 deve ser evitado para a primeira camada. Note que para se usar o ER308 na primeira camada, a diluição máxima permitida seria de cerca de 35%, de forma que o ponto resultante permaneça dentro do campo austenita mais martensita (A+M).


Com o uso de ER309 na primeira camada (ponto 2, figura 42), o ponto cai na região (A+M). Devido à presença de austenita, esta região não apresenta os mesmos problemas citados para o ER308 na primeira camada, requerendo um pré-aquecimento mínimo, embora a camada possa apresentar valores de dureza acima de 250HB. Assim, o uso de ER309 é viável para a primeira camada. Notase que, caso a diluição seja acima de cerca de 60%, o depósito torna-se totalmente martensítico, o que deve ser evitado. Além disso, para diluição abaixo de cerca de 30%, o depósito torna-se totalmente austenítico, que também deve ser evitado.

Com o uso de ER312 na primeira camada (ponto 3, figura abaixo), o ponto cai entre as regiões A+M e A+M+F, o que é muito adequado para a soldabilidade. Logo, o uso de ER312 para a primeira camada é uma solução tecnicamente mais adequada, embora seja mais cara do que a com ER309. Uma diluição superior a cerca de 60% deve ser evitada para que o metal de solda não atinja o campo martensítico.

Figura Diagrama de Schaefler para a primeira camada do revestimento. MB – Metal base.


Deposição da Segunda Camada de Solda:

Para esta análise, o metal base passa a ter a composição dos dois pontos considerados como satisfatórios na deposição da primeira camada (pontos 2 e 3 figura acima).

Estes pontos foram novamente unidos por retas a cada um dos metais de adição (ER308, ER309 e ER312) e os pontos localizados no centro das retas tomados como representativos do metal de solda da segunda camada (diluição de 50%). A figura 43 mostra o diagrama de Schaefler considerando a primeira camada com ER309, e a figura 44 com ER312.

Figura 43 Diagrama de Schaefler para a segunda camada do revestimento. Primeira camada com ER-309.

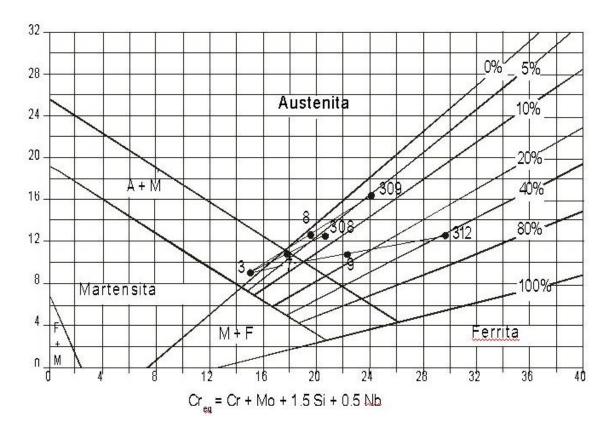


Figura 44

Diagrama de Schaefler para a segunda camada do revestimento. Primeira camada com ER-312.

ER308 na segunda camada: Com ER309 na primeira camada (ponto 4, figura 43), o metal de solda está na interseção dos campos (A+M) e (A+M+F).

A composição química prevista é 15,8%Cr e 8,2%Ni. Comparando-se com a figura 40, observa-se que ele está próximo da região de melhor soldabilidade, menos sensível à fissuração. Assim, o ER308 é uma boa alternativa para uma segunda camada sobre a camada de ER309. Com ER312 na primeira camada (ponto 7, figura 44), o metal de solda se localiza na interseção dos campos (A+M+F) e (A+F), região de melhor soldabilidade. A composição química prevista é 17,8%Cr 7,8%Ni, muito próxima à solicitada de 18%Cr e 8%Ni. Nota-se que, diluicão. independentemente da existe pouca chance de problemas soldabilidade. Para uma baixa diluição, o depósito tende para o campo (A+F) com teor de ferrita delta acima de 5%. Para diluição acima de 50%, tende para o campo (A+M+F).

Assim, o ER308 é uma boa alternativa para uma segunda camada sobre a camada de ER312.

ER-309 na segunda camada: Com ER309 na primeira camada (ponto 5 figura 43), o metal de solda cai no campo totalmente austenítico. Logo, o cordão de solda será sensível à fissuração na solidificação devido à ausência de ferrita d. Esta situação deve ser evitada. Com ER312 na primeira camada (ponto 8, figura 44), o metal de solda cai no campo (A+F) com cerca de 3% de ferrita delta. A composição química prevista é 19,0%Cr e 8,8%Ni, acima do especificado. Depósito poderá ser sensível à fissuração na solidificação devido ao teor de ferrita d relativamente baixo. Já foram identificadas alternativas melhores do que essa.

ER312 na segunda camada: Com ER309 na primeira camada (ponto 6 figura 43), o metal de solda cai no campo (A+F) com cerca de 10% de ferrita delta. A composição química prevista é 20,3%Cr e 7,8%Ni, com teor de Cr acima do requisitado. Não há riscos de soldabilidade. Neste caso, o ER312 é uma boa alternativa para a segunda camada. Com ER312 na primeira camada (ponto 9, figura 44), o metal de solda cai no campo (A+F) com cerca de 20% de ferrita d. A composição química prevista é 21,8%Cr e 6,8%Ni, com teor de Cr acima do requisitado. Não há riscos de soldabilidade. Neste caso, o ER-312 é uma boa alternativa para a segunda camada. Resumindo, dentre as alternativas estudadas, pode-se concluir que:

A solução mais econômica é usar o ER309 na primeira camada e o ER308 na segunda. Obtém-se um depósito com cerca de 15,8%Cr e 8,2%Ni.

A solução mais confiável é usar o ER312 na primeira camada e o ER308 na segunda. Obtém-se um depósito com cerca de 17,2%Cr e 7,8%Cr.

O uso de ER308 na primeira camada deve ser evitado, assim como o de ER309 na segunda camada.

O ER312 é o único metal de adição que pode ser usado na primeira e na segunda camada. Entretanto, resulta em um teor de Cr muito acima do especificado e aumenta o custo dos consumíveis de soldagem.

Um estudo de caso muito interessante e similar ao apresentado acima foi feito por Kotecki (49) envolvendo a soldagem de um aço estrutural A36 e um aço inoxidável AISI410 com metal de adição 309L. Neste estudo, Kotecki trabalha com o diagrama constitucional WRC-1992 no lugar do diagrama de Schaeffler.