Open Up new Applications with LaserHybrid Welding

Mario Cesar Freitas

Fronius-Jumade

Divisão de Soldas e Carregadores de Baterias

World Market Laser Technology

Arc technology: push away competition

Fronius has the right product

Quelle: Frost&Sullivan

Contents

- Principles of LaserHybrid welding
- Application on the VW Phaeton
- Practical Use on the New Audi A8
- Plant Engineering
- Economic Feasibility Considerations
- LaserBrazing
- Summary/Outlook

Schematic Representation

Metal Transfer

Synergies

LaserHybrid

Higher process stability, higher welding speed
Good flow behaviour of weld edges
Large weld volume, good metallurgical properties

VW Phaeton Application

Lateral Roof Rail Welding Group

Application in the Audi A8

Requirements for a successful application

- Clamping device builder has to be involved into the process
- Designer has to be involved into the process

System integrator has to be involved into the process

Maximum Cost-Efficiency with Maximum Quality

Material 22MnB5

Material thickness: 2.4 - 3.2 mm

Vs: 4.2 m/min

Weld corresponds to EN ISO 13919 –1/Assessment group B (high)

4 Processes Possible with LaserHybrid

- 1 Laser
- 2 LaserHybrid
- 3 GMA
- 4 GMA Tacking

Practical Examples

Steel

A

Vs: 2.4 – 4.2m/min

Total System

Cost Comparison on the Audi A2

Source: Audi-Alu Centre

Seal Welding of Galvanised Steels without Defined Gap

LaserHybrid: Material thickness: 1.7 mm, zinc coating: 7.5 µm

Laser alone: Material thickness: 1.7 mm, zinc coating: 7.5 µm

LaserBrazing: Fillet Weld on Overlap Joint

 v_s : 3 m/min

I_s: 205 A

Material: DC 04 + ZE 25/25

Material thickness: 1.5 mm

Filler metal: SG CuSi 3; d: 1.6 mm

References (41 Systems)

- 1 Laser Centre Hanover (Prototype version, longitudinal welds on pipes)
- 4 Audi Neckarsulm (Roof rails, Audi A8)
- 8 Volkswagen Wolfsburg (Phaeton, doors)
- 13 Daimler Chrysler (Mettingen, Singelfingen)
- 1 General Motors USA (Pilot plant)
- 1 Trumpf Laser USA (Pilot plant)
- 1 Fraunhofer Institute for Laser Technology USA (Pilot plant)
- 2 Volvo (Steel axles)
- 1 Fiat (Pilot plant, LaserBrazing on galvanised steel)

References (41 Systems)

- 2 Vito (Belgiian Institute for Technology, aluminium stringers)
- 1 Aldinger D (Heat exchangers)
- 1 French Institute for Laser Technology (Bourgogne, pilot plant)
- 1 Institute for Advanced Engineering (Korea, rail car profiles)
- 1 Sungwoo Korea (Vehicle components)
- 1 Katech Korean Automotive Technology Institute (Vehicle components)
- 1 University of Technology Madrid
- 1 AWL Netherlands

Application Center in the Technology Center in Wels

Hall 380 m²

Laser aggregate

Accessoires

3 Laboratories

Demonstration cell 12 m² Robot + external axle 20 m² Robot cell 20 m²

Summary / Outlook

- High welding speed with low thermal input
- 1 System: LaserHybrid, GMA, GMA-Tacking, Laser
- Higher compatibility with gap tolerances than with laser welding
- LaserHybrid: 1 6 mm in AI, St, CrNi
- Outlook:
 - Laser-Tandem for higher deposition rates
 - LaserHybrid on galvanised sheets

Growth rate of LaserHybrid

PERFECT WELDING